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Abstract

There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little
direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth
and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty $1 year to
evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock
consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two
geographically distinct populations. Despite being captured together on the same spawning grounds, we show the
behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth.
Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated
low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat
selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-
spawning marine fishes.
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Introduction

It seems intuitive that populations of marine fishes should

exhibit adaptations to their local environment that optimize

performance. On the other hand, it is difficult to envision how

such fine-scale population structure can be maintained in species

with dispersive, planktonic life history stages inhabiting an open

environment with few barriers to gene flow, such as that

exemplified by most marine ecosystems [1–3]. Increasingly there

are indications of local adaptations in marine fishes at spatial scales

that cannot be explained solely by the complexities of oceano-

graphic features acting as a dispersal barrier [1,2,4]. However, the

ecological extent of these adaptations remains largely unexplored

in the field. Given the high rates of exploitation experienced by

many marine fishes and the challenges of large-scale climatic

changes, understanding the extent of diversity contained within a

management unit and their influence on population dynamics,

connectivity, and resiliency is an essential prerequisite for effective

management and conservation [5,6].

In Atlantic cod Gadus morhua, perhaps the most intensively

researched example of a broadcast spawning marine fish, local

adaptations in life history traits have been noted amongst

populations separated by relatively large distances [7]. More

recently, population structure has been discovered at much finer

scales than previously thought possible [1,8–13]. Throughout its

range in the North Atlantic, cod from different regions exhibit a

high degree of diversification in life history traits such as growth

rate and age at maturity [7], as well as behavior represented by

repeated occurrences of migratory and non-migratory behavioral

types within some of the Atlantic cod stocks [14]. In Iceland for

example, genetic differentiation in the cod stock seems to be based

on whether an individual spawns off northeastern or southwestern

Iceland [15]. However, both of these populations have been shown

to contain migratory and non-migratory individuals [16,17] that

may represent distinct ecotypes or even populations within the cod

stock. The migratory cod have been described as a ‘‘frontal

behavioral type’’ as they cross frontal boundaries, where warm

Atlantic water meets cold, southward-flowing Arctic waters at the

edge of the continental shelf to the southeast and northwest of the

country. These cod exhibit a distinctive behavioral pattern of rapid

vertical migrations between depths of 200–600 m while crossing

steep thermal gradients during the feeding season [16; Figure 1].

In contrast, the non-migratory cod have been identified as a

‘‘coastal behavioral type’’ as they remain in relatively shallow

water throughout the course of the year and rarely enter water

deeper than 200 m [16; Figure 1] though still may make relatively

long distance movements on the continental shelf. Coastal and

frontal cod differ in their allele frequencies at the pantophysan

(Pan-I) locus [17] and may show differences in their energy

allocation strategies [18]. Despite these differences, both behav-
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ioral types return to the same general areas during spawning [16;

Figure 2] and differentiation at neutral genetic loci has yet to be

identified.

This is not an uncommon pattern as tagging recaptures have

shown that even though the migratory and non-migratory cod

exhibit differences in allele frequencies at the Pan-I locus [17,19]

and frequently other differences as well [7,20], they are seemingly

sympatric on the spawning grounds [7,21,22]. While it is unclear

to what extent they interact with each other, it has been suggested

that the two types segregate by depth during spawning [21] but

other differences may exist in courtship or spawning behaviors as

well. Furthermore, the extent of ecological variability between the

behavioral types and its potential effect on their life history

strategies has not been fully investigated. Electronic data storage

tags (DSTs) offer great potential to resolve questions surrounding

habitat use and behavior. In this study we used depth-temperature

observations collected from DSTs to delineate ecological niches

and establish that differences in seasonal niches influence habitat

use during spawning periods.

Results

As of spring 2008, 1488 Atlantic cod have been tagged with

DSTs in Icelandic waters and to date approximately 31% have

been recovered. Of the recovered cod, 104 individuals, represent-

ing approximately 6.37 million paired temperature and depth

observations, were at liberty for a sufficient period of time to assess

behavioral type and construct seasonal thermal-bathymetric

niches. However only 57 individuals were at liberty for a sufficient

period of time to determine the date and degree-days elapsed

between out-migration from the spawning grounds and the

initiation of in-migration and had profiles of sufficient quality to

determine when spawning activity was initiated. The majority of

the recovered individuals were from the southern population

(n = 88), and the sexes were equally represented in each geographic

population.

The coastal behavioral type comprised approximately two-

thirds (n = 67) of the recovered individuals and no individuals were

observed to alternate between coastal and frontal behavioral

patterns during their time at liberty. The DFA identified two

clusters corresponding to the coastal and frontal behavioral types

and separated along the first canonical variable (Rc
2 = 0.911;

F15,276 = 30.24; P,0.0001; Figure 3). The axis consisted primarily

of an increasing proportion of days with a depth range .50 m and

temperature range 2.5–3.0uC as well as a decreasing proportion of

0.5–1.0uC days. A second canonical variable described the

variation within the behavioral types in terms of an increasing

proportion of days with 1.0–5.0 m depth range and a decrease in

the proportion of 5.0–10.0 m days (Rc
2 = 0.760; F8,202 = 14.53;

P,0.0001; Figure 3). There were not a large number of

intermediate forms between the behavioral types as the visual

and quantitative classifications could not be reconciled in only five

individuals. These five individuals were excluded from further

analysis.

Frontal cod inhabited deeper water than their coastal

counterparts during 01 June – 31 December (t71 = 12.30;

P,0.0001). However the behavior of individuals, as described

by the first canonical variable, was largely independent of the

mean depth occupied during this time (F1,105 = 1.93; P = 0.17).

The behavior of coastal fish in deep (150–250 m) water was more

similar to that of other coastal individuals inhabiting shallower

water as described by daily depth and temperature ranges than

frontal cod and vice versa. Likewise, the variability within

behavioral types as described by the second canonical variable

was independent of mean depth (F1,105 = 0.12; P = 0.73).

During the spawning season, southern frontal cod generally

occupied deeper water than southern coastal cod (Figure 4). A

modified version of Syrjala’s test [23] was used to compare the

thermal-bathymetric niches of southern coastal and frontal cod for

two different definitions of the spawning season. The more

inclusive and conservative definition encompassed the entire

spawning season and used data from the period between the

end of in-migration and outmigration. We also made the same

Figure 1. Temperature and depth profiles collected by
electronic data storage tags implanted in Atlantic cod. Examples
of one year depth and temperature profiles of frontal (A) and coastal (B)
behavioral types of Atlantic cod in Iceland showing in-migration to
spawning habitat, time spent at spawning grounds, and out-migration
back to feeding grounds in the highlighted areas. Temperature is
represented by a red line while depth is represented by a blue one.
Periods interpreted as time spent in spawning aggregations was
characterized by the highlighted portions with a clear tidal signature
between in-migration and out-migration (C). Arrows indicate events
interpreted as possible Atlantic cod spawning events as described by
Brawn (1961a, b), Rose (1993), and Hutchings et al. (1999).
doi:10.1371/journal.pone.0017528.g001

Segregated Spawning in Icelandic Cod Ecotypes
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comparison confining our analysis to periods when a clear tidal

signature was present, which was interpreted as participation in

spawning aggregations based on published accounts of cod

spawning behavior [see Materials and Methods]. The difference

between the thermal-bathymetric spawning niches between in and

out migration of coastal and frontal fish was greater than that

between randomized groups of fish (n = 27 coastal, 26 frontal,

494,498 observations, P,0.001) despite being captured in close

proximity while on the spawning grounds (Figure 2). Furthermore,

southern coastal and frontal cod did not occupy the same thermal-

bathymetric niches (Figure 4) when exhibiting a depth profile with

a clear tidal signature (n = 21 coastal, 23 frontal, 40,903

observations, P,0.001). The separation between coastal and

frontal cod during these periods when a clear tidal signature was

present seemed to be greater than that during the period between

in and out migration (Figure 4). Northern coastal and frontal cod

exhibited a very similar pattern despite being captured from within

the same fjord system. However, a larger sample size is required to

more effectively evaluate whether their distributions when engaged

in a spawning aggregation are different (n = 12 coastal, 3 frontal,

6,660 observations, P = 0.06).

The separation in thermal-bathymetric niches was consistent

throughout the remainder of the year for the southern population,

as coastal cod generally inhabited a narrower seasonal range of

temperatures and depths (Figure 5). However, there seemed to be

a higher level of overlap between the behavioral types in northern

cod (Figure 5). The same test was used to compare the seasonal

thermal-bathymetric distributions of northern (n = 12 coastal, 3

frontal; observations $70,848; P#0.10) and southern fish (n = 53

coastal, 35 frontal; observations $564,830; P#0.001). After testing

the eight null-hypotheses using the Holm-Bonferroni method, we

found significant differences between the thermal-bathymetric

niches of southern coastal and frontal cod in all seasons but only in

winter and summer for northern coastal and frontal cod. There

was no evidence that males and females of the same behavioral

type occupied different thermal bathymetric niches (P$0.43).

The seasonal thermal and bathymetric niches occupied by

coastal and frontal cod seemed to be reflected in the phenology of

migratory and spawning behavior (Figure 6). Regardless of

behavioral type, southern cod initiated behavioral patterns

consistent with participation in spawning aggregations at an

earlier mean date than northern fish (F1,61 = 2.22; P = 0.02). Yet

there were no differences in the mean start date for spawning or

the initiation of migration between the behavioral types within a

region (F1,61#2.20; P$0.14). There were no differences between

northern coastal and frontal cod in the mean number of degree

days accumulated prior to migration or spawning (F1,61#0.50;

P$0.48), but again additional samples are required to confirm this

conclusion. However, southern coastal cod accumulated a higher

number of degree days prior to migration and spawning than

frontal fish in the same region (F1,61 = 61.86; P#0.0001). Southern

frontal cod were more similar in to northern counterparts in terms

of degree-day accumulation. Individuals at liberty for multiple

years demonstrated a high level of interannual variability in the

date and degree-day for the initiation of both migratory and

spawning behavior. While there was no evidence of consistent

differences related to sex, size, age, year, or site of capture, we

lacked sufficient statistical power to definitively address these

hypotheses due to small sample sizes of these groups within each

population-behavioral type combination.

Discussion

Atlantic cod in Icelandic waters seem to be diversified to

behaviourally distinct ecotypes based on their occupation of

different thermal and bathymetric niches. The behavioural

Figure 2. Original capture locations of Atlantic cod implanted with data storage tags (DSTs) around Iceland. Insets show the sampling
regions in north (N1) and south (S1-S5) Iceland and indicate the number of recovered coastal (C, #) and frontal (F, n) individuals originally tagged and
released in that area. The bracketed numbers and filled symbols represent individuals for whom spawning information could be extracted from their
DST profile. Scale bar within each inset indicates a distance of 10 km.
doi:10.1371/journal.pone.0017528.g002

Segregated Spawning in Icelandic Cod Ecotypes
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patterns of coastal and frontal cod seem to be discrete and

independent of the position of an individual on an ecological

gradient such as depth. The associated differential habitat use

separates coastal and frontal cod throughout the year and may be

sufficient to isolate the behavioural types during spawning.

Southern coastal and frontal cod occupy different thermal-

bathymetric niches during the period encompassing the spawning

season between in and outmigration. Greater separation between

the behavioural types was observed during periods when clear

tidal signatures were present. While we interpreted these periods

as participation in a spawning aggregation, future research should

focus on validating this interpretation. In either case, it seems that

the behavioural types exhibit differential habitat selection during

the spawning season in southern Iceland. Northern coastal and

frontal cod exhibited a similar pattern despite using the same fjord

system and being captured in close proximity (Figure 2) during the

spawning season. The seasonal thermal-bathymetric niches of

southern coastal and frontal cod are distinct throughout the year,

but we found no such difference in spring and autumn for the

northern fish. While this is an interesting finding, more data is

needed from northern Icelandic cod to fully evaluate differences in

thermal-bathymetric niches during spawning and throughout the

remainder of the year among behavioural types.

The coastal and frontal behavioural types in northern and

southern Iceland initiate migratory and spawning behaviour on

similar dates. This is despite experiencing different thermal

regimes that could potentially lead to different rates of gonadal

development and maturation [24,25] in the south and suggests

that southern coastal and frontal cod may have diverged in more

aspects than habitat selection and migratory and feeding

behaviour. For example, the migratory and reproductive phenol-

ogies of the behavioural types may suggest physiological

adaptations to their thermal niches. Despite the differences in

thermal regimes and degree-days accumulated by the adult cod,

there likely remains a selective pressure to time gonadal

maturation and migration so that spawning occurs during

environmental conditions favourable to larval survival [26,27].

Alternatively, coastal and frontal Icelandic cod may show variation

in their reproductive output or success that might be attributable

to the differences in their thermal histories but cannot be assessed

using DSTs. While the relationship between thermal history and

reproductive physiology and phenology in Atlantic cod has been

established [25], a better understanding of the ecological and

population level implications of this relationship is needed.

The combination of temporal overlap and depth segregation

observed between coastal and frontal Icelandic cod during

spawning is comparable to that described for Norwegian coastal

cod and northeast Arctic cod, which also exhibit a high degree of

spatial and temporal overlap on the spawning grounds [21]. In

both Iceland and Norway, the close proximity in which the

different groups are encountered may be misleading. The habitat

actually used for courtship and spawning by cod is likely a

relatively small subset of what has been defined as cod spawning

grounds by humans. For example, cod spawning grounds are

defined for assessment purposes by the proportion of females in

spawning condition present at a given location [28]. However, this

may not be a particularly precise indicator for identifying locations

where spawning is actively occurring [29] and the DST profiles

seem to support this conclusion. While a period of 30–90 days may

elapse between the end of in-migration and the initiation of out-

migration, the depth profiles consistent with participation in

spawning occur on average over only a 12-day period (range: 0–41

days). Cod seem to be present on what might be defined as a

spawning ground for a longer period of time than that spent

actively engaged in a spawning aggregation. A finer scale

assessment of habitat use is needed to fully understand the extent

of separation between coastal and frontal cod, particularly whether

there is geospatial overlap of spawning aggregations. The relatively

small amount of overlap seen in the thermal bathymetric niches

Figure 3. Definition of coastal and frontal behavioral types of
Atlantic cod. Mean (6 SE) proportion of daily depth (A) and
temperature (B) ranges experienced by individuals tagged with
electronic data storage tags (DSTs). Discriminant function analysis (C)
performed on the proportion of daily depth and temperature ranges
experienced by each individual indicated a clear separation between
the coastal (northern: #; southern: N) and frontal (northern: n; southern:
m) behavioral types based upon the proportion of depth and
temperature ranges. The visual and DFA classifications of the five
individuals represented by a gray circle or triangle could not be
reconciled and these individuals were excluded from further analysis.
Arrows indicate individuals whose depth and temperature profiles are
displayed in Fig. 2a and 2b.
doi:10.1371/journal.pone.0017528.g003

Segregated Spawning in Icelandic Cod Ecotypes
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during the spawning season or during participation in spawning

aggregations (Figure 4) seems to be driven primarily by differences

among the geographic regions (Figure 2). However, we did not

have sufficient data to thoroughly evaluate this.

While the opportunity for interaction amongst adults might be

limited by differential habitat use during spawning, it must be noted

that coastal and frontal Icelandic cod could potentially mix during

early life history [30] and thus may maintain a demographic

connection between the behavioural types. It is unknown whether

behavioural type is a genetically fixed trait or a phenotypic response

to environmental factors [17], but the low numbers of individuals

observed in this study exhibiting intermediate behavioural types and

the lack of a strong relationship between depth and behaviour within

coastal and frontal cod may be evidence for genetic determination.

Furthermore, recent studies have noted the importance of post-

settlement processes, such as natal homing and migratory behaviour,

to the maintenance of population structure [31,32]. These issues will

need to be resolved in order to determine the precise nature and

degree of interaction between the components of the Icelandic cod

stock. However, our results are consistent with the presence of a

complex population structure as previously concluded in studies of

population genetic structure [15], physiology [16,33], and otolith

morphology and microchemistry [34,35].

The Icelandic cod stock is not unique in its complexity, as

various levels of differentiation have been reported within stocks

throughout the range of Atlantic cod [1,8–13,19] in particular the

repeated occurrence of migratory and non-migratory stock

components [14]. While our results do not provide evidence for

the origin of these strategies, they do suggest that these strategies

are accompanied by behavioural and ecological differentiation,

Figure 4. Bivariate kernel density estimates of thermal-bathymetric niches occupied during potential spawning activity of Atlantic
cod. Thermal-bathymetric niches occupied during the spawning season as defined as the period between the end of in-migration and outmigration
(A, B) and for periods of inferred presence in a spawning aggregation as indicated by the presence of a clear tidal signature during the spawning
season (C, D) are presented for southern coastal (A, C) and frontal (B, D) behavioral types in the Icelandic stock of Atlantic cod. Dotted lines enclose
the 95th, 50th, and 10th percentiles of the distributions.
doi:10.1371/journal.pone.0017528.g004

Segregated Spawning in Icelandic Cod Ecotypes
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such as differential habitat selection, that might act as isolating

mechanisms and allow a finer scale population structure than

might otherwise be expected in a broadcast spawning marine fish.

The question that then arises is whether this matters for the

conservation and management of marine resources? It certainly

emphasizes that the basic unit of management, the stock, is more a

human construction based around geographic or political

boundaries, than actual biological units [36]. A single manage-

ment unit may feasibly contain numerous populations, each with

their own ecological traits demonstrating varying degrees of

demographic connectivity [2–4,36]. In a conservation sense, this

intraspecific diversity is important, providing long-term stability

and resiliency for the species [5] as environmental conditions

fluctuate. However it is also important for the management of

commercial fisheries [5,6,37]; particularly if the stock components

possess different life history characteristics such as growth rates,

age at maturation, or fecundity. Managing for diversity does not

necessarily run counter to effective management for economically

viable fisheries [37]. Accounting for intraspecific diversity and

local adaptations will only increase the chances of understanding

and predicting population responses to fishing pressure, environ-

mental impacts, and global climate change, and thus successful

management efforts and sustainable fisheries [5,6,37]. It should no

longer be assumed that all fish within a stock are equal and part of

the same demographic and ecological unit. For example, there is

evidence suggesting the decline of some stock components due to

differences in vulnerability to exploitation can have serious

repercussions to the stock as a whole [31,38]. However if it can

be properly accounted for and managed, the complexity found

within the Icelandic cod stock and marine fish stocks generally

could serve as the foundation for more sustainable fisheries

capable of responding to natural and anthropogenic disturbances.

Materials and Methods

Fish tagging
We used DSTs (DST Centi and DST Milli: Star-Oddi Marine

Device Manufacturing, Reykjavik, Iceland) capable of recording

Figure 5. Bivariate kernel density estimates of seasonal thermal-bathymetric niches occupied by Atlantic cod ecotypes around
Iceland. Dotted lines enclose the 95th, 50th, and 10th percentiles of the distributions.
doi:10.1371/journal.pone.0017528.g005
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temperature in the range of 22.0–40.0uC (resolution: 0.032uC;

accuracy: 60.1uC) and depth in the range of 0–800 m (resolution:

60.04% of measurement range; accuracy: 60.4% of measure-

ment range). The DST Centi possessed the battery life and data

storage capabilities to sample temperature and depth at 10-minute

intervals for up to three years, while the DST Milli tags were

programmed to sample at 6-hour intervals June through February

and 10-minute intervals March through May for two years.

Atlantic cod were sampled from spawning grounds around

Iceland from 2002 through 2008 using gill nets and Danish seines

(Figure 2). Individuals displaying no indication of barotrauma or

external injury were selected for tagging. A DST was surgically

implanted into each individual’s abdominal cavity following the

procedures outlined by Thorsteinsson and Marteinsdóttir [39].

The entire procedure was completed in less than five minutes and

the fish was returned to the sea immediately upon its completion.

Fish tagging activities conducted by V.T. under license number

0304-1901 issued by the Icelandic Committee for Welfare of

Experimental Animals, Chief Veterinary Office at the Ministry of

Agriculture, Reykjavik. Tagged fish were recovered by commer-

cial fishermen.

DST interpretation and data collection
Individuals were classified as coastal or frontal behavioural types

visually from DST depth and temperature profiles based on the

criteria described by Pálsson and Thorsteinsson [16] and

Pampoulie et al. [17] and quantitatively using discriminant

function analysis (DFA). Briefly, we examined the temperature

and depth profile for 1 June-31 December to determine

behavioural type for each individual. This time period was

selected to eliminate any effects migratory or reproductive

behaviour might have on the assignment of behavioural type.

The classification of behavioural type is based on depth-

temperature profiles outside the spawning season, and hence

when testing for differences in spawning behaviour we are not

making a circular argument based on the prior categorisation

Individuals that showed a clear seasonal temperature signal over

the course of the year and did not spend significant periods of time

over the course of their time at liberty below 200 m (.10%) were

visually classified as coastal cod, while those found below 200 m

for the majority of the year and showed a highly variable

temperature signal were visually classified as frontal cod (Figure 1).

To assess these classifications quantitatively, we determined the

daily temperature and depth ranges during 1 June-31 December.

The daily ranges for each individual were sorted into twelve 5.0-m

bins for depth (,1 m, 1–5 m, 5–10 m, …, 45–50 m, .50 m) and

nine 0.5uC bins for temperature (0.0–0.5uC, 0.5–1.0uC, …, 3.5–

4.0uC, .4.0uC) then the proportion of days accounted for by each

bin was determined. These proportions were used in DFA to

quantitatively assess the behavioural types assigned visually.

The date of out-migration from the spawning ground, in-

migration back to the spawning grounds, and initiation and

duration of spawning activity were visually identified for each

individual from data collected by the DSTs using SeaStar v.

3.7.9.4 (Star Oddi Marine Device Manufacturing, Reykjavik,

Iceland). Periods of migration were characterized by a period of

consistent, directed change in the depth occupied by an individual

usually initiated in late winter or early spring for in-migrations and

late spring to midsummer for out-migrations (Figure 1a–b). The

initiation of spawning behaviour was characterized as the point

after in-migration when vertical movement was minimized and a

clear tidal signature was evident (Figure 1c) consistent with cod

behaviour during participation in a spawning aggregation as

described in the literature [40–44]. Published descriptions of cod

spawning behavior in both laboratory and field settings suggest

that they form aggregations on or near the substrate [40–45] and

that individuals, particularly males, remain in these aggregations

for extended periods of time [45]. The presence of a clear tidal

signature in the depth profile is indicative of an individual

maintaining a more or less constant depth through the tidal cycle

[46] as might be expected for an individual holding its position

within a spawning aggregation. Most individuals exhibiting these

periods with a clear tidal signature during a spawning season

actually had depth profiles with several distinct periods inter-

spersed with episodes of unclassified vertical movement. The

DSTs also may have recorded rapid vertical movements during

these periods with clear tidal signatures (Figure 1c) that may have

indicated participation in a spawning event consistent with

published descriptions [42,44]. However due to the uncertainty

of this interpretation and the temporal resolution of the data, only

the periods where a clear tidal signature was evident were

considered for analysis of niche use during spawning.

Elapsed time between out-migration and both in-migration and

initiation of spawning was determined and used to calculate the

degree-days (uD) between these life cycle events. The degree-day is

a useful method of standardizing the effect of temperature on

growth, development, and the timing of life-history events across

individuals of poikilothermic organisms that may experience

different temperature regimes [24]. A threshold temperature (To)

Figure 6. Phenology of migration and spawning of Atlantic cod
in Iceland as extrapolated from recovered electronic data
storage tags. Mean (6 SE) Julian (A) and degree (B) day for initiating
migration and spawning are shown for each Icelandic cod ecotype
(NC = north coastal; NF = north frontal; SC = south coastal; SF = south
frontal).
doi:10.1371/journal.pone.0017528.g006

Segregated Spawning in Icelandic Cod Ecotypes
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of 0.0uC was used for all degree-day calculations. Daily measures

of uD were then summed for the periods of interest.

Data analysis
Five different thermal-bathymetric niches were obtained for

each fish. These were the sets of temperature-depth pairs occupied

by the fish during the winter (December-February), spring (March-

May), summer (June-August) and autumn (September-November)

seasons, and during periods when individuals exhibited behav-

ioural patterns consistent with participation in a spawning

aggregation as described above. We tested whether the coastal

and frontal fish occupied different niches using a variation of

Syrjala’s test [23] for difference between the spatial distributions of

two populations. The test firstly normalises the number of

observations at an individual and group level to remove any

differences caused by sample size. A test statistic is computed by

summing the squares of differences in abundance of observations

between the two groups within rectangular regions of the niche

space. In contrast to Syrjala’s original method, our rectangles are

randomly sampled from the space because data are not obtained

from fixed spatial stations. The distribution of test statistics for data

that meets the null hypothesis that there is no difference between

the groups is obtained by repeatedly randomly allocating fish into

two groups and computing a test statistic. The P-value for the null

hypothesis is the quantile position of the actual test statistic within

the set of values for randomised data. In every test, 2,000

rectangles were sampled to calculate the test statistic and 2,000

random permutations of the data were used to create the

distribution. These numbers were comparable to those typically

used in the unmodified Syrjala test and yielded consistent results

with our data. Two distinct hypotheses were tested, firstly that the

thermal-bathymetric niches occupied by coastal and frontal cod

during spawning differed within both regions (north and south),

and secondly that the niche space distributions differed between

coastal and frontal fish in each region and season. In both cases the

significance of P-values was tested using the Holm-Bonferroni

method to account for multiple comparisons. A two-way

multivariate analysis of variance (MANOVA) was used to evaluate

differences in the Julian day and degree-day of the initiation of

migration and spawning between region and behavioural type.
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